3.1.18 \(\int \csc ^{10}(c+d x) (a+a \sec (c+d x)) \, dx\) [18]

3.1.18.1 Optimal result
3.1.18.2 Mathematica [C] (verified)
3.1.18.3 Rubi [A] (verified)
3.1.18.4 Maple [A] (verified)
3.1.18.5 Fricas [B] (verification not implemented)
3.1.18.6 Sympy [F(-1)]
3.1.18.7 Maxima [A] (verification not implemented)
3.1.18.8 Giac [A] (verification not implemented)
3.1.18.9 Mupad [B] (verification not implemented)

3.1.18.1 Optimal result

Integrand size = 19, antiderivative size = 165 \[ \int \csc ^{10}(c+d x) (a+a \sec (c+d x)) \, dx=\frac {a \text {arctanh}(\sin (c+d x))}{d}-\frac {a \cot (c+d x)}{d}-\frac {4 a \cot ^3(c+d x)}{3 d}-\frac {6 a \cot ^5(c+d x)}{5 d}-\frac {4 a \cot ^7(c+d x)}{7 d}-\frac {a \cot ^9(c+d x)}{9 d}-\frac {a \csc (c+d x)}{d}-\frac {a \csc ^3(c+d x)}{3 d}-\frac {a \csc ^5(c+d x)}{5 d}-\frac {a \csc ^7(c+d x)}{7 d}-\frac {a \csc ^9(c+d x)}{9 d} \]

output
a*arctanh(sin(d*x+c))/d-a*cot(d*x+c)/d-4/3*a*cot(d*x+c)^3/d-6/5*a*cot(d*x+ 
c)^5/d-4/7*a*cot(d*x+c)^7/d-1/9*a*cot(d*x+c)^9/d-a*csc(d*x+c)/d-1/3*a*csc( 
d*x+c)^3/d-1/5*a*csc(d*x+c)^5/d-1/7*a*csc(d*x+c)^7/d-1/9*a*csc(d*x+c)^9/d
 
3.1.18.2 Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 3 in optimal.

Time = 0.30 (sec) , antiderivative size = 135, normalized size of antiderivative = 0.82 \[ \int \csc ^{10}(c+d x) (a+a \sec (c+d x)) \, dx=-\frac {128 a \cot (c+d x)}{315 d}-\frac {64 a \cot (c+d x) \csc ^2(c+d x)}{315 d}-\frac {16 a \cot (c+d x) \csc ^4(c+d x)}{105 d}-\frac {8 a \cot (c+d x) \csc ^6(c+d x)}{63 d}-\frac {a \cot (c+d x) \csc ^8(c+d x)}{9 d}-\frac {a \csc ^9(c+d x) \operatorname {Hypergeometric2F1}\left (-\frac {9}{2},1,-\frac {7}{2},\sin ^2(c+d x)\right )}{9 d} \]

input
Integrate[Csc[c + d*x]^10*(a + a*Sec[c + d*x]),x]
 
output
(-128*a*Cot[c + d*x])/(315*d) - (64*a*Cot[c + d*x]*Csc[c + d*x]^2)/(315*d) 
 - (16*a*Cot[c + d*x]*Csc[c + d*x]^4)/(105*d) - (8*a*Cot[c + d*x]*Csc[c + 
d*x]^6)/(63*d) - (a*Cot[c + d*x]*Csc[c + d*x]^8)/(9*d) - (a*Csc[c + d*x]^9 
*Hypergeometric2F1[-9/2, 1, -7/2, Sin[c + d*x]^2])/(9*d)
 
3.1.18.3 Rubi [A] (verified)

Time = 0.52 (sec) , antiderivative size = 132, normalized size of antiderivative = 0.80, number of steps used = 16, number of rules used = 15, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.789, Rules used = {3042, 4360, 25, 25, 3042, 25, 3317, 25, 3042, 3101, 25, 254, 2009, 4254, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \csc ^{10}(c+d x) (a \sec (c+d x)+a) \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {a-a \csc \left (c+d x-\frac {\pi }{2}\right )}{\cos \left (c+d x-\frac {\pi }{2}\right )^{10}}dx\)

\(\Big \downarrow \) 4360

\(\displaystyle \int -\left (\csc ^{10}(c+d x) \sec (c+d x) (a (-\cos (c+d x))-a)\right )dx\)

\(\Big \downarrow \) 25

\(\displaystyle -\int -\left ((\cos (c+d x) a+a) \csc ^{10}(c+d x) \sec (c+d x)\right )dx\)

\(\Big \downarrow \) 25

\(\displaystyle \int \csc ^{10}(c+d x) \sec (c+d x) (a \cos (c+d x)+a)dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int -\frac {a-a \sin \left (c+d x-\frac {\pi }{2}\right )}{\sin \left (c+d x-\frac {\pi }{2}\right ) \cos \left (c+d x-\frac {\pi }{2}\right )^{10}}dx\)

\(\Big \downarrow \) 25

\(\displaystyle -\int \frac {a-a \sin \left (\frac {1}{2} (2 c-\pi )+d x\right )}{\cos \left (\frac {1}{2} (2 c-\pi )+d x\right )^{10} \sin \left (\frac {1}{2} (2 c-\pi )+d x\right )}dx\)

\(\Big \downarrow \) 3317

\(\displaystyle a \int \csc ^{10}(c+d x)dx-a \int -\csc ^{10}(c+d x) \sec (c+d x)dx\)

\(\Big \downarrow \) 25

\(\displaystyle a \int \csc ^{10}(c+d x)dx+a \int \csc ^{10}(c+d x) \sec (c+d x)dx\)

\(\Big \downarrow \) 3042

\(\displaystyle a \int \csc (c+d x)^{10}dx+a \int \csc (c+d x)^{10} \sec (c+d x)dx\)

\(\Big \downarrow \) 3101

\(\displaystyle a \int \csc (c+d x)^{10}dx-\frac {a \int -\frac {\csc ^{10}(c+d x)}{1-\csc ^2(c+d x)}d\csc (c+d x)}{d}\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {a \int \frac {\csc ^{10}(c+d x)}{1-\csc ^2(c+d x)}d\csc (c+d x)}{d}+a \int \csc (c+d x)^{10}dx\)

\(\Big \downarrow \) 254

\(\displaystyle \frac {a \int \left (-\csc ^8(c+d x)-\csc ^6(c+d x)-\csc ^4(c+d x)-\csc ^2(c+d x)+\frac {1}{1-\csc ^2(c+d x)}-1\right )d\csc (c+d x)}{d}+a \int \csc (c+d x)^{10}dx\)

\(\Big \downarrow \) 2009

\(\displaystyle a \int \csc (c+d x)^{10}dx-\frac {a \left (-\text {arctanh}(\csc (c+d x))+\frac {1}{9} \csc ^9(c+d x)+\frac {1}{7} \csc ^7(c+d x)+\frac {1}{5} \csc ^5(c+d x)+\frac {1}{3} \csc ^3(c+d x)+\csc (c+d x)\right )}{d}\)

\(\Big \downarrow \) 4254

\(\displaystyle -\frac {a \int \left (\cot ^8(c+d x)+4 \cot ^6(c+d x)+6 \cot ^4(c+d x)+4 \cot ^2(c+d x)+1\right )d\cot (c+d x)}{d}-\frac {a \left (-\text {arctanh}(\csc (c+d x))+\frac {1}{9} \csc ^9(c+d x)+\frac {1}{7} \csc ^7(c+d x)+\frac {1}{5} \csc ^5(c+d x)+\frac {1}{3} \csc ^3(c+d x)+\csc (c+d x)\right )}{d}\)

\(\Big \downarrow \) 2009

\(\displaystyle -\frac {a \left (-\text {arctanh}(\csc (c+d x))+\frac {1}{9} \csc ^9(c+d x)+\frac {1}{7} \csc ^7(c+d x)+\frac {1}{5} \csc ^5(c+d x)+\frac {1}{3} \csc ^3(c+d x)+\csc (c+d x)\right )}{d}-\frac {a \left (\frac {1}{9} \cot ^9(c+d x)+\frac {4}{7} \cot ^7(c+d x)+\frac {6}{5} \cot ^5(c+d x)+\frac {4}{3} \cot ^3(c+d x)+\cot (c+d x)\right )}{d}\)

input
Int[Csc[c + d*x]^10*(a + a*Sec[c + d*x]),x]
 
output
-((a*(Cot[c + d*x] + (4*Cot[c + d*x]^3)/3 + (6*Cot[c + d*x]^5)/5 + (4*Cot[ 
c + d*x]^7)/7 + Cot[c + d*x]^9/9))/d) - (a*(-ArcTanh[Csc[c + d*x]] + Csc[c 
 + d*x] + Csc[c + d*x]^3/3 + Csc[c + d*x]^5/5 + Csc[c + d*x]^7/7 + Csc[c + 
 d*x]^9/9))/d
 

3.1.18.3.1 Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 254
Int[(x_)^(m_)/((a_) + (b_.)*(x_)^2), x_Symbol] :> Int[PolynomialDivide[x^m, 
 a + b*x^2, x], x] /; FreeQ[{a, b}, x] && IGtQ[m, 3]
 

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3101
Int[(csc[(e_.) + (f_.)*(x_)]*(a_.))^(m_)*sec[(e_.) + (f_.)*(x_)]^(n_.), x_S 
ymbol] :> Simp[-(f*a^n)^(-1)   Subst[Int[x^(m + n - 1)/(-1 + x^2/a^2)^((n + 
 1)/2), x], x, a*Csc[e + f*x]], x] /; FreeQ[{a, e, f, m}, x] && IntegerQ[(n 
 + 1)/2] &&  !(IntegerQ[(m + 1)/2] && LtQ[0, m, n])
 

rule 3317
Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((d_.)*sin[(e_.) + (f_.)*(x_)])^(n 
_.)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[a   Int[(g*Co 
s[e + f*x])^p*(d*Sin[e + f*x])^n, x], x] + Simp[b/d   Int[(g*Cos[e + f*x])^ 
p*(d*Sin[e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, d, e, f, g, n, p}, x]
 

rule 4254
Int[csc[(c_.) + (d_.)*(x_)]^(n_), x_Symbol] :> Simp[-d^(-1)   Subst[Int[Exp 
andIntegrand[(1 + x^2)^(n/2 - 1), x], x], x, Cot[c + d*x]], x] /; FreeQ[{c, 
 d}, x] && IGtQ[n/2, 0]
 

rule 4360
Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_.)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + 
(a_))^(m_.), x_Symbol] :> Int[(g*Cos[e + f*x])^p*((b + a*Sin[e + f*x])^m/Si 
n[e + f*x]^m), x] /; FreeQ[{a, b, e, f, g, p}, x] && IntegerQ[m]
 
3.1.18.4 Maple [A] (verified)

Time = 1.03 (sec) , antiderivative size = 123, normalized size of antiderivative = 0.75

method result size
derivativedivides \(\frac {a \left (-\frac {1}{9 \sin \left (d x +c \right )^{9}}-\frac {1}{7 \sin \left (d x +c \right )^{7}}-\frac {1}{5 \sin \left (d x +c \right )^{5}}-\frac {1}{3 \sin \left (d x +c \right )^{3}}-\frac {1}{\sin \left (d x +c \right )}+\ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right )\right )+a \left (-\frac {128}{315}-\frac {\csc \left (d x +c \right )^{8}}{9}-\frac {8 \csc \left (d x +c \right )^{6}}{63}-\frac {16 \csc \left (d x +c \right )^{4}}{105}-\frac {64 \csc \left (d x +c \right )^{2}}{315}\right ) \cot \left (d x +c \right )}{d}\) \(123\)
default \(\frac {a \left (-\frac {1}{9 \sin \left (d x +c \right )^{9}}-\frac {1}{7 \sin \left (d x +c \right )^{7}}-\frac {1}{5 \sin \left (d x +c \right )^{5}}-\frac {1}{3 \sin \left (d x +c \right )^{3}}-\frac {1}{\sin \left (d x +c \right )}+\ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right )\right )+a \left (-\frac {128}{315}-\frac {\csc \left (d x +c \right )^{8}}{9}-\frac {8 \csc \left (d x +c \right )^{6}}{63}-\frac {16 \csc \left (d x +c \right )^{4}}{105}-\frac {64 \csc \left (d x +c \right )^{2}}{315}\right ) \cot \left (d x +c \right )}{d}\) \(123\)
parallelrisch \(-\frac {a \left (\cot \left (\frac {d x}{2}+\frac {c}{2}\right )^{9}+\frac {90 \cot \left (\frac {d x}{2}+\frac {c}{2}\right )^{7}}{7}+\frac {9 \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{7}}{7}+\frac {414 \cot \left (\frac {d x}{2}+\frac {c}{2}\right )^{5}}{5}+18 \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{5}+390 \cot \left (\frac {d x}{2}+\frac {c}{2}\right )^{3}+138 \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{3}+2304 \cot \left (\frac {d x}{2}+\frac {c}{2}\right )+1170 \tan \left (\frac {d x}{2}+\frac {c}{2}\right )+2304 \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )-2304 \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )\right )}{2304 d}\) \(147\)
risch \(-\frac {2 i a \left (315 \,{\mathrm e}^{15 i \left (d x +c \right )}-630 \,{\mathrm e}^{14 i \left (d x +c \right )}-1995 \,{\mathrm e}^{13 i \left (d x +c \right )}+4620 \,{\mathrm e}^{12 i \left (d x +c \right )}+5103 \,{\mathrm e}^{11 i \left (d x +c \right )}-14826 \,{\mathrm e}^{10 i \left (d x +c \right )}-6303 \,{\mathrm e}^{9 i \left (d x +c \right )}+27432 \,{\mathrm e}^{8 i \left (d x +c \right )}+2657 \,{\mathrm e}^{7 i \left (d x +c \right )}-16618 \,{\mathrm e}^{6 i \left (d x +c \right )}-273 \,{\mathrm e}^{5 i \left (d x +c \right )}+6412 \,{\mathrm e}^{4 i \left (d x +c \right )}-203 \,{\mathrm e}^{3 i \left (d x +c \right )}-1398 \,{\mathrm e}^{2 i \left (d x +c \right )}+59 \,{\mathrm e}^{i \left (d x +c \right )}+128\right )}{315 d \left ({\mathrm e}^{i \left (d x +c \right )}-1\right )^{9} \left ({\mathrm e}^{i \left (d x +c \right )}+1\right )^{7}}-\frac {a \ln \left ({\mathrm e}^{i \left (d x +c \right )}-i\right )}{d}+\frac {a \ln \left ({\mathrm e}^{i \left (d x +c \right )}+i\right )}{d}\) \(239\)

input
int(csc(d*x+c)^10*(a+a*sec(d*x+c)),x,method=_RETURNVERBOSE)
 
output
1/d*(a*(-1/9/sin(d*x+c)^9-1/7/sin(d*x+c)^7-1/5/sin(d*x+c)^5-1/3/sin(d*x+c) 
^3-1/sin(d*x+c)+ln(sec(d*x+c)+tan(d*x+c)))+a*(-128/315-1/9*csc(d*x+c)^8-8/ 
63*csc(d*x+c)^6-16/105*csc(d*x+c)^4-64/315*csc(d*x+c)^2)*cot(d*x+c))
 
3.1.18.5 Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 366 vs. \(2 (149) = 298\).

Time = 0.27 (sec) , antiderivative size = 366, normalized size of antiderivative = 2.22 \[ \int \csc ^{10}(c+d x) (a+a \sec (c+d x)) \, dx=-\frac {256 \, a \cos \left (d x + c\right )^{8} + 374 \, a \cos \left (d x + c\right )^{7} - 1526 \, a \cos \left (d x + c\right )^{6} - 1204 \, a \cos \left (d x + c\right )^{5} + 3220 \, a \cos \left (d x + c\right )^{4} + 1316 \, a \cos \left (d x + c\right )^{3} - 2996 \, a \cos \left (d x + c\right )^{2} - 315 \, {\left (a \cos \left (d x + c\right )^{7} - a \cos \left (d x + c\right )^{6} - 3 \, a \cos \left (d x + c\right )^{5} + 3 \, a \cos \left (d x + c\right )^{4} + 3 \, a \cos \left (d x + c\right )^{3} - 3 \, a \cos \left (d x + c\right )^{2} - a \cos \left (d x + c\right ) + a\right )} \log \left (\sin \left (d x + c\right ) + 1\right ) \sin \left (d x + c\right ) + 315 \, {\left (a \cos \left (d x + c\right )^{7} - a \cos \left (d x + c\right )^{6} - 3 \, a \cos \left (d x + c\right )^{5} + 3 \, a \cos \left (d x + c\right )^{4} + 3 \, a \cos \left (d x + c\right )^{3} - 3 \, a \cos \left (d x + c\right )^{2} - a \cos \left (d x + c\right ) + a\right )} \log \left (-\sin \left (d x + c\right ) + 1\right ) \sin \left (d x + c\right ) - 496 \, a \cos \left (d x + c\right ) + 1126 \, a}{630 \, {\left (d \cos \left (d x + c\right )^{7} - d \cos \left (d x + c\right )^{6} - 3 \, d \cos \left (d x + c\right )^{5} + 3 \, d \cos \left (d x + c\right )^{4} + 3 \, d \cos \left (d x + c\right )^{3} - 3 \, d \cos \left (d x + c\right )^{2} - d \cos \left (d x + c\right ) + d\right )} \sin \left (d x + c\right )} \]

input
integrate(csc(d*x+c)^10*(a+a*sec(d*x+c)),x, algorithm="fricas")
 
output
-1/630*(256*a*cos(d*x + c)^8 + 374*a*cos(d*x + c)^7 - 1526*a*cos(d*x + c)^ 
6 - 1204*a*cos(d*x + c)^5 + 3220*a*cos(d*x + c)^4 + 1316*a*cos(d*x + c)^3 
- 2996*a*cos(d*x + c)^2 - 315*(a*cos(d*x + c)^7 - a*cos(d*x + c)^6 - 3*a*c 
os(d*x + c)^5 + 3*a*cos(d*x + c)^4 + 3*a*cos(d*x + c)^3 - 3*a*cos(d*x + c) 
^2 - a*cos(d*x + c) + a)*log(sin(d*x + c) + 1)*sin(d*x + c) + 315*(a*cos(d 
*x + c)^7 - a*cos(d*x + c)^6 - 3*a*cos(d*x + c)^5 + 3*a*cos(d*x + c)^4 + 3 
*a*cos(d*x + c)^3 - 3*a*cos(d*x + c)^2 - a*cos(d*x + c) + a)*log(-sin(d*x 
+ c) + 1)*sin(d*x + c) - 496*a*cos(d*x + c) + 1126*a)/((d*cos(d*x + c)^7 - 
 d*cos(d*x + c)^6 - 3*d*cos(d*x + c)^5 + 3*d*cos(d*x + c)^4 + 3*d*cos(d*x 
+ c)^3 - 3*d*cos(d*x + c)^2 - d*cos(d*x + c) + d)*sin(d*x + c))
 
3.1.18.6 Sympy [F(-1)]

Timed out. \[ \int \csc ^{10}(c+d x) (a+a \sec (c+d x)) \, dx=\text {Timed out} \]

input
integrate(csc(d*x+c)**10*(a+a*sec(d*x+c)),x)
 
output
Timed out
 
3.1.18.7 Maxima [A] (verification not implemented)

Time = 0.21 (sec) , antiderivative size = 136, normalized size of antiderivative = 0.82 \[ \int \csc ^{10}(c+d x) (a+a \sec (c+d x)) \, dx=-\frac {a {\left (\frac {2 \, {\left (315 \, \sin \left (d x + c\right )^{8} + 105 \, \sin \left (d x + c\right )^{6} + 63 \, \sin \left (d x + c\right )^{4} + 45 \, \sin \left (d x + c\right )^{2} + 35\right )}}{\sin \left (d x + c\right )^{9}} - 315 \, \log \left (\sin \left (d x + c\right ) + 1\right ) + 315 \, \log \left (\sin \left (d x + c\right ) - 1\right )\right )} + \frac {2 \, {\left (315 \, \tan \left (d x + c\right )^{8} + 420 \, \tan \left (d x + c\right )^{6} + 378 \, \tan \left (d x + c\right )^{4} + 180 \, \tan \left (d x + c\right )^{2} + 35\right )} a}{\tan \left (d x + c\right )^{9}}}{630 \, d} \]

input
integrate(csc(d*x+c)^10*(a+a*sec(d*x+c)),x, algorithm="maxima")
 
output
-1/630*(a*(2*(315*sin(d*x + c)^8 + 105*sin(d*x + c)^6 + 63*sin(d*x + c)^4 
+ 45*sin(d*x + c)^2 + 35)/sin(d*x + c)^9 - 315*log(sin(d*x + c) + 1) + 315 
*log(sin(d*x + c) - 1)) + 2*(315*tan(d*x + c)^8 + 420*tan(d*x + c)^6 + 378 
*tan(d*x + c)^4 + 180*tan(d*x + c)^2 + 35)*a/tan(d*x + c)^9)/d
 
3.1.18.8 Giac [A] (verification not implemented)

Time = 0.34 (sec) , antiderivative size = 164, normalized size of antiderivative = 0.99 \[ \int \csc ^{10}(c+d x) (a+a \sec (c+d x)) \, dx=-\frac {45 \, a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{7} + 630 \, a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{5} + 4830 \, a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} - 80640 \, a \log \left ({\left | \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 1 \right |}\right ) + 80640 \, a \log \left ({\left | \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - 1 \right |}\right ) + 40950 \, a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + \frac {80640 \, a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{8} + 13650 \, a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{6} + 2898 \, a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{4} + 450 \, a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + 35 \, a}{\tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{9}}}{80640 \, d} \]

input
integrate(csc(d*x+c)^10*(a+a*sec(d*x+c)),x, algorithm="giac")
 
output
-1/80640*(45*a*tan(1/2*d*x + 1/2*c)^7 + 630*a*tan(1/2*d*x + 1/2*c)^5 + 483 
0*a*tan(1/2*d*x + 1/2*c)^3 - 80640*a*log(abs(tan(1/2*d*x + 1/2*c) + 1)) + 
80640*a*log(abs(tan(1/2*d*x + 1/2*c) - 1)) + 40950*a*tan(1/2*d*x + 1/2*c) 
+ (80640*a*tan(1/2*d*x + 1/2*c)^8 + 13650*a*tan(1/2*d*x + 1/2*c)^6 + 2898* 
a*tan(1/2*d*x + 1/2*c)^4 + 450*a*tan(1/2*d*x + 1/2*c)^2 + 35*a)/tan(1/2*d* 
x + 1/2*c)^9)/d
 
3.1.18.9 Mupad [B] (verification not implemented)

Time = 14.79 (sec) , antiderivative size = 159, normalized size of antiderivative = 0.96 \[ \int \csc ^{10}(c+d x) (a+a \sec (c+d x)) \, dx=\frac {2\,a\,\mathrm {atanh}\left (\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )\right )}{d}-\frac {65\,a\,\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}{128\,d}-\frac {23\,a\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^3}{384\,d}-\frac {a\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^5}{128\,d}-\frac {a\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^7}{1792\,d}-\frac {{\mathrm {cot}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^9\,\left (256\,a\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^8+\frac {130\,a\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^6}{3}+\frac {46\,a\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^4}{5}+\frac {10\,a\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^2}{7}+\frac {a}{9}\right )}{256\,d} \]

input
int((a + a/cos(c + d*x))/sin(c + d*x)^10,x)
 
output
(2*a*atanh(tan(c/2 + (d*x)/2)))/d - (65*a*tan(c/2 + (d*x)/2))/(128*d) - (2 
3*a*tan(c/2 + (d*x)/2)^3)/(384*d) - (a*tan(c/2 + (d*x)/2)^5)/(128*d) - (a* 
tan(c/2 + (d*x)/2)^7)/(1792*d) - (cot(c/2 + (d*x)/2)^9*(a/9 + (10*a*tan(c/ 
2 + (d*x)/2)^2)/7 + (46*a*tan(c/2 + (d*x)/2)^4)/5 + (130*a*tan(c/2 + (d*x) 
/2)^6)/3 + 256*a*tan(c/2 + (d*x)/2)^8))/(256*d)